题目内容
(本小题满分14分)已知函数论函数的奇偶性,并说明理由.
略
解析
B(文)设是定义在上的偶函数,当时,222233.(1)若在上为增函数,求的取值范围;(2)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
设(1)若且对任意实数均有成立,求的表达式;(2)在(1)条件下,当是单调递增,求实数k的取值范围。
(本小题满分14分)已知定义域为[0, 1]的函数f(x)同时满足: ①对于任意的x[0, 1],总有f(x)≥0; ②f(1)=1; ③若0≤x1≤1, 0≤x2≤1, x1+x2≤1, 则有f(x1+x2) ≥ f(x1)+f(x2).(1)试求f(0)的值; (2)试求函数f(x)的最大值;(3)试证明:当x, nN+时,f(x)<2x.
(本题12分)若函数是定义在(1,4)上单调递减函数,且,求的取值范围。
(本小题满分12分)设f(x)是定义在[-1,1]上的奇函数,对于任意的 当时,都有(1)若函数g(x)=f(x-c)和h(x)=f(x-c2)的定义域的交集是空集,求c的取值范围;(2)判断函数f(x)在[-1,1]上的单调性,并用定义证明。
(本小题满分10分)已知函数为偶函数,且其图象上相邻两对称轴之间的距离为.(I)求函数的表达式。(II)若,求的值.
(本题12分)如图,已知底角的等腰梯形ABCD,底边BC长为7cm,腰长为cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=,试写出左边部分的面积与的函数解析式,并画出大致图象.
(本题满分10分)设函数。(1)将f(x)写成分段函数,在给定坐标系中作出函数的图像;(2)解不等式f(x)>5,并求出函数y= f(x)的最小值。