题目内容

4.如图,设A,B两点在河的两岸,一测量者在A的同侧选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为(  )
A.5022 mB.50 mC.25 mD.252 m

分析 先利用三角形的内角和求出∠B=30°,再利用正弦定理,即可得出结论.

解答 解:在△ABC中,∵∠ACB=45°,∠CAB=105°
∴∠B=30°
由正弦定理可得:ACsinB=ABsinACB
∴AB=AC×sinACBsinB=50×2212=502m.
故选:A.

点评 本题考查解三角形的实际应用,解题的关键是利用正弦定理,求三角形的边,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网