题目内容
【题目】某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,
,(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计
从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
【答案】(Ⅰ)(Ⅱ)
0 | 1 | 2 | 3 | |
【解析】
试题分析:(Ⅰ)根据频率分布直方图中小长方形面积为频率,而频数为总数与频率之积. 因此参加社区服务时间在时间段小时的学生人数为(人),参加社区服务时间在时间段小时的学生人数为(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为人.概率估计为(Ⅱ)随机变量的可能取值为.由(Ⅰ)可知,概率为因为 ~,所以.随机变量的分布列为
0 | 1 | 2 | 3 | |
解:(Ⅰ)根据题意,
参加社区服务时间在时间段小时的学生人数为(人),
参加社区服务时间在时间段小时的学生人数为(人).
所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为人.
所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的
概率估计为 5分
(Ⅱ)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为
由已知得,随机变量的可能取值为.
所以;
;
;
.
随机变量的分布列为
0 | 1 | 2 | 3 | |
因为 ~,所以. 13分
【题目】某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取部进行测试,其结果如下:
甲种手机供电时间(小时) | ||||||
乙种手机供电时间(小时) |
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述部乙种手机中随机抽取部,记所抽部手机供电时间不小于小时的个数为,求的分布列和数学期望.