题目内容

16.在△ABC中,内角A、B、C对应的三边长分别为a,b,c,且满足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(Ⅱ)若a=$\sqrt{3}$,求b+c的取值范围.

分析 (Ⅰ)利用余弦定理表示出cosB,代入已知等式整理后再利用余弦定理表示求出cosA的值,即可确定出A的度数;
(Ⅱ)由a与sinA的值,利用正弦定理表示出b与c,代入b+c中,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的值域确定出范围即可.

解答 解:(Ⅰ)∵cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,c(acosB-$\frac{1}{2}$b)=a2-b2
∴a2+c2-b2-bc=2a2-2b2,即a2=b2+c2-bc,
∵a2=b2+c2-2bccosA,
∴cosA=$\frac{1}{2}$,
则A=$\frac{π}{3}$;
(Ⅱ)由正弦定理得$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2,
∴b=2sinB,c=2sinC,
∴b+c=2sinB+2sinC=2sinB+2sin(A+B)=2sinB+2sinAcosB+2cosAsinB
=3sinB+$\sqrt{3}$cosB=2$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2π}{3}$),
∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
则b+c∈($\sqrt{3}$,2$\sqrt{3}$].

点评 此题考查了正弦、余弦定理,以及正弦函数的定义域与值域,熟练掌握定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网