题目内容
16.设i是虚数单位,则复数$z=\frac{1-i}{i}$的共轭复数$\overline z$=-1+i.分析 利用复数的运算法则、共轭复数的定义即可得出.
解答 解:复数$z=\frac{1-i}{i}$=$\frac{-i(1-i)}{-i•i}$=-1-i的共轭复数$\overline z$=-1+i.
故答案为:-1+i.
点评 本题考查了复数的运算法则、共轭复数的定义,属于基础题.
练习册系列答案
相关题目
6.椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$的离心率为( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
7.已知扇形圆心角的弧度数为2,半径为3cm,则扇形的面积为( )
A. | 3cm2 | B. | 6cm2 | C. | 9cm2 | D. | 18cm2 |
4.若数列{an}中,a1=1,an+1=-$\frac{1}{2}$an(n∈N*),则an=( )
A. | (-$\frac{1}{2}$)n-1 | B. | -($\frac{1}{2}$)n-1 | C. | (-$\frac{1}{2}$)n | D. | -($\frac{1}{2}$)n |
11.由直线y=x-4,曲线y=$\sqrt{2x}$以及y=0所围成的图形的面积为( )
A. | $\frac{40}{3}$ | B. | $\frac{34}{3}$ | C. | $\frac{64}{3}$ | D. | 16 |
1.已知函数f(x)=mx|x-1|-|x|+1,则关于函数y=f(x)的零点情况,下列说法中正确的是( )
A. | 当-1≤m≤-3+2$\sqrt{2}$时,函数y=f(x)有且仅有一个零点 | |
B. | 当m=-3+2$\sqrt{2}$或m≤-1或m≥1或m=0时,函数y=f(x)有两个零点 | |
C. | 当-3+2$\sqrt{2}$<m<0或0<m<1时,y=f(x)有三个零点 | |
D. | 函数y=f(x)最多可能有四个零点 |
8.求值:sin45°cos15°+cos45°sin 15°=( )
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
6.若函数f(x)=$\root{3}{x}$•$\sqrt{x}$,则f′(x)=( )
A. | $\frac{5}{6}$x | B. | $\frac{5}{6}$$\root{6}{x}$ | C. | $\frac{5}{6\root{6}{x}}$ | D. | $\frac{6}{5}$$\root{6}{x}$ |