题目内容
7.已知扇形圆心角的弧度数为2,半径为3cm,则扇形的面积为( )A. | 3cm2 | B. | 6cm2 | C. | 9cm2 | D. | 18cm2 |
分析 先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.
解答 解:根据扇形的弧长公式可得l=αr=6,
根据扇形的面积公式可得S=$\frac{1}{2}$lr=$\frac{1}{2}$×3×6=9.
故选:C.
点评 本题考查扇形的弧长与面积公式,正确运用公式是解题的关键.
练习册系列答案
相关题目
1.某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(Ⅰ)设甲停车付费a元.依据题意,填写下表:
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率;
(Ⅲ)若甲停车1小时以上且不超过2小时的概率为$\frac{1}{3}$,停车付费多于14元的概率为$\frac{5}{12}$,求甲停车付费恰为6元的概率.
(Ⅰ)设甲停车付费a元.依据题意,填写下表:
甲停车时长 (小时) | (0,1] | (1,2] | (2,3] | (3,4] |
甲停车费a (元) |
(Ⅲ)若甲停车1小时以上且不超过2小时的概率为$\frac{1}{3}$,停车付费多于14元的概率为$\frac{5}{12}$,求甲停车付费恰为6元的概率.
18.已知函数f(x)=-x2+ax-b,若a,b都是从区间[0,3]任取的一个数,则f(1)>0成立的概率是( )
A. | $\frac{2}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{9}$ | D. | $\frac{8}{9}$ |
15.函数y=sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$)是( )
A. | 最小正周期为π的奇函数 | B. | 最小正周期为π的偶函数 | ||
C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为$\frac{π}{2}$的偶函数 |