题目内容
设函数(1)证明:当时, (2)设当时,,求的取值范围。
解析
(本小题满分14分)已知二次函数满足以下两个条件:①不等式的解集是(-2,0) ②函数在上的最小值是3 (Ⅰ)求的解析式; (Ⅱ)若点在函数的图象上,且(ⅰ)求证:数列为等比数列(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.
已知定义在实数集R上的函数y=满足条件:对于任意实数x、y都有f(x+y)=f(x)+f(y).(1)求f(0);(2) 求证:是奇函数;(3) 若时,,求在上的值域.
已知函数 . (1) 求函数的定义域;(2) 求证在上是减函数;(3) 求函数的值域.
已知函数.(1)判断函数的奇偶性,并加以证明;(2)用定义证明在上是减函数;(3)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
已知函数(1)若不等式的解集为求实数的值(2)在(1)的条件下若对一切实数恒成立求实数的取值范围
已知函数图像上点处的切线方程与直线平行(其中),(I)求函数的解析式; (II)求函数上的最小值;(III)对一切恒成立,求实数的取值范围.
(本题满分14分) 定义在上的函数满足:(1)对任意,都有(2)当时,有,求证:(Ⅰ)是奇函数;(Ⅱ)
f(3-2x)的定义域为,求f(2x+1)的定义域.(8分)