题目内容
【题目】设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数. (Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.
【答案】解:(Ⅰ)当a∈{0,1,2,3,4,5},b∈{0,1,2}时,共可以产生6×3=18个一元二次方程. 若事件A发生,则a 2﹣4b2≥0,即|a|≥2|b|.又a≥0,b≥0,所以a≥2b.
从而数对(a,b)的取值为(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12组值.
所以P(A)= .
(Ⅱ)据题意,试验的全部结果所构成的区域为D={(a,b)|0≤a≤5,0≤b≤2},构成事件A的区域为A={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.
在平面直角坐标系中画出区域A、D,如图,
其中区域D为矩形,其面积S(D)=5×2=10,
区域A为直角梯形,其面积S(A)= .
所以P(A)= .
【解析】(Ⅰ)本题是古典概型,首先明确事件的个数,利用公式解答;Ⅱ)本问是几何概型的求法,明确事件对应的区域面积,利用面积比求概率.
练习册系列答案
相关题目