题目内容
【题目】已知函数y=f(x)对任意的x∈(﹣ , )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是( )
A. f(﹣ )<f(﹣ )
B. f( )<f( )??
C.f(0)>2f( )
D.f(0)> f( )
【答案】A
【解析】解:构造函数g(x)= ,
则g′(x)= = (f′(x)cosx+f(x)sinx),
∵对任意的x∈(﹣ , )满足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函数g(x)在x∈(﹣ , )单调递增,
则g(﹣ )<g(﹣ ),即 ,
∴ ,即 f(﹣ )<f(﹣ ),故A正确.
g(0)<g( ),即 ,
∴f(0)<2f( ),
故选:A.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).
练习册系列答案
相关题目