题目内容
9.化简:$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)×$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$(a>0,b>0)分析 a>0,b>0,分别计算${a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b$=${a}^{\frac{1}{3}}$(a-b)=${a}^{\frac{1}{3}}$$({a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}})$$({a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}})$,${a}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$=$\frac{{a}^{\frac{1}{3}}-2\root{3}{b}}{a}$,$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$=$\frac{{a}^{\frac{1+\frac{2}{3}}{2}}}{{a}^{\frac{\frac{1}{2}+\frac{1}{3}}{5}}}$=${a}^{\frac{2}{3}}$.代入即可得出.
解答 解:∵a>0,b>0,
∴${a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b$=${a}^{\frac{1}{3}}$(a-b)=${a}^{\frac{1}{3}}$$({a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}})$$({a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}})$,${a}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$=$\frac{{a}^{\frac{1}{3}}-2\root{3}{b}}{a}$,$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$=$\frac{{a}^{\frac{1+\frac{2}{3}}{2}}}{{a}^{\frac{\frac{1}{2}+\frac{1}{3}}{5}}}$=${a}^{\frac{2}{3}}$.
∴原式=$\frac{{a}^{\frac{1}{3}}•{a}^{\frac{2}{3}}}{a}$=$\frac{{a}^{\frac{1}{3}+\frac{2}{3}}}{a}$=$\frac{a}{a}$=1.
点评 本题考查了分数指数幂的运算性质与乘法公式,考查了计算能力,属于中档题.