题目内容
19.求方程x5+10x3+20x-4=0的实数根(精确到0.01).分析 令f(x)=x5+10x3+20x-4,从而可判断f(0)f(0.5)<0;从而可得函数f(x)=x5+10x3+20x-4的零点在(0,0.5)之间;再由二分法求近似值即可.
解答 解:令f(x)=x5+10x3+20x-4,
f(0)=-4<0,f(0.5)=7.28125>0;
故f(0)f(0.5)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0,0.5)之间;
f(0.25)=1.15723>0,
故f(0)f(0.25)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0,0.25)之间;
f(0.125)=-1.48044<0,
故f(0.125)f(0.25)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0.125,0.25)之间;
f(0.1875)=-0.18385<0,
故f(0.1875)f(0.25)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0.1875,0.25)之间;
f(0.21875)=0.480176>0,
故f(0.1875)f(0.21875)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0.1875,0.21875)之间;
f(0.203125)=0.146655>0,
故f(0.1875)f(0.203125)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0.1875,0.203125)之间;
f(0.1953125)=-0.01896<0,
故f(0.1953125)f(0.203125)<0;
故函数f(x)=x5+10x3+20x-4的零点在(0.1953125,0.203125)之间;
故方程x5+10x3+20x-4=0的实数根的近似解为0.20.
点评 本题考查了方程的根与函数的零点的关系应用及二分法的应用,属于中档题.
A. | g(1)<g(2)<f(0) | B. | f(0)<g(2)<g(1) | C. | g(1)<f(0)<g(2) | D. | f(0)<g(1)<g(2) |