题目内容
(本小题满分12分)已知点
,过点
作抛物线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153533228.gif)
的切线
,切点
在第二象限,如图.
(Ⅰ)求切点
的纵坐标;
(Ⅱ)若离心率为
的椭圆
恰好经过切点
,设切线
交椭圆的另一点为
,记切线
的斜率分别为
,若
,求椭圆方程.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841537516409.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153501328.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153517210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153533228.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153548566.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153564185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153595200.gif)
(Ⅰ)求切点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153595200.gif)
(Ⅱ)若离心率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153611269.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153642725.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153595200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153564185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153689206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153704458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153720301.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153735484.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841537516409.jpg)
解:(Ⅰ)设切点
,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153813481.gif)
,
由切线
的斜率为
,得
的方程为
,又点
在
上,
,即点
的纵坐标![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154001329.gif)
.
(Ⅱ)由(Ⅰ) 得
,切线斜率![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318415404772.gif)
,
设
,切线方程为
,由
,得
,所以椭圆方程为
,且过
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154313436.gif)
由
,
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841544062111.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841544222438.gif)
将
,
代入得:
,所以
,
椭圆方程为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153813450.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153813481.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318415382972.gif)
由切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153564185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153860423.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153564185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153891561.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153501328.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153564185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153923486.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184153595200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154001329.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154016190.gif)
(Ⅱ)由(Ⅰ) 得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154032510.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318415404772.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154047457.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154063449.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154094410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154110314.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154250397.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154266546.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154032510.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154313436.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841543751315.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841543911085.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841544062111.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231841544222438.gif)
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154047457.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154453419.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154469373.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154484530.gif)
椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184154500582.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目