题目内容
【题目】如图,已知OPQ是半径为 圆心角为 的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.
(Ⅰ)若Rt△CBO的周长为 ,求 的值.
(Ⅱ)求 的最大值,并求此时α的值.
【答案】解:(Ⅰ)BC=OCsinα= sinα,OB=OCcosα= cosα,
则若Rt△CBO的周长为 ,
则 + sinα+ cosα= ,
sinα+cosα= ,
平方得2sinαcosα= ,
即 = = ,
解得tanα=3(舍)或tanα= .
则 = = = = .
(Ⅱ)在Rt△OBC中,BC=OCsinα= sinα,OB=OCcosα= cosα,
在Rt△ODA中,
OA=DAtan = BC= sinα,
∴AB=OB﹣OA= (cosα﹣ cosα),
则 =| | |= (cosα﹣ cosα) sinα
=
∵ ,
∴ ,
∴当 ,
即 时, 有最大值 .
【解析】(Ⅰ)由条件利用直角三角形中的边角关系求出三角形的周长,利用三角函数的倍角公式进行化简进行求解.(Ⅱ)结合向量的数量积公式,结合三角函数的带动下进行求解.
【考点精析】本题主要考查了扇形面积公式的相关知识点,需要掌握若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,才能正确解答此题.
练习册系列答案
相关题目