题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC为锐角三角形,且 ,求a﹣b的取值范围.

【答案】解:(Ⅰ)∵cos2A+cos2B+2sinAsinB=2coc2C, ∴1﹣2sin2A+1﹣2sin2B+2sinAsinB=2(1﹣sin2C),
即sin2C=sin2A+sin2B﹣sinAsinB,
由正弦定理得:c2=a2+b2﹣ab,

且角C角为三角形的内角,即
(Ⅱ)由(Ⅰ)知
得,a=2sinA,b=2sinB,
∵△ABC为锐角三角形, ,又∵
∴A∈( ),
∴A﹣ ∈(﹣ ),
,即a﹣b的取值范围为(﹣1,1)
【解析】(Ⅰ)由已知利用三角函数恒等变换的应用,正弦定理化简已知等式可得c2=a2+b2﹣ab,利用余弦定理可求cosC,结合C角为三角形的内角,可求C的值.(Ⅱ)由(Ⅰ)知 ,利用正弦定理可求a=2sinA,b=2sinB,利用三角函数恒等变换的应用可求a﹣b=2sin(A﹣ ),可求范围A﹣ ∈(﹣ ),利用正弦函数的性质即可得解a﹣b的范围.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网