题目内容

【题目】下列命题中错误的个数为:( )
①y= 的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y= 的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x= 对称.
A.0
B.1
C.2
D.3

【答案】A
【解析】解:①y= ,f(﹣x)= + = + = =﹣ =﹣( + )=﹣f(x),

∴函数为奇函数,则图象关于(0,0)对称,故正确②y=x3+x+1的图象关于(0,1)对称;由题意设对称中心的坐标为(a,b),

则有2b=f(a+x)+f(a﹣x)对任意x均成立,代入函数解析式得,2b=(a+x)3+3(a+x)+1+(a﹣x)3+3(a﹣x)+1对任意x均成立,

∴a=0,b=1即对称中心(0,1),故正确③y= 的图象关于直线x=0对称,因为函数为偶函数,故函数关于y轴(x=0)对称,故正确,④y=sinx+cosx= sin(x+ )的图象关于直线x+ = 对称,即x= 对称,故正确.

所以答案是:A

【考点精析】关于本题考查的函数的图象,需要了解函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网