题目内容

已知:等差数列{an}中,a1=1,S3=9,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)设bn=
2n
(n+1)Sn
,求数列{bn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列的通项公式和前n项和公式能求出d=2,由此能求出an=1+(n-1)×2=2n-1.
(2)由Sn=n+
n(n-1)
2
×2
=n2,得bn=
2n
(n+1)Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
),由此利用错位相减法能求出数列{bn}的前n项和Tn
解答: 解:(1)∵等差数列{an}中,a1=1,S3=9,
a1=1
3a1+3d=9
,解得d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵a1=1,d=2,
∴Sn=n+
n(n-1)
2
×2
=n2
∴bn=
2n
(n+1)Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=2(1-
1
n+1

=
2n
n+1
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网