题目内容
16.数列{an}定义如下:a1=a,0≤a≤1,an+1=2(an-an2)(n∈N+)(1)当a=$\frac{1}{2}$时,求a4的值;
(2)试确定实数a的值,使得a3=a4成立;
(3)求证:当0<a<1且a≠$\frac{1}{2}$时,总有an+1>an(n≥2,n∈N+)成立.
分析 (1)由a=$\frac{1}{2}$,结合数列递推式依次求出a2,a3,a4的值得答案;
(2)由a3=a4,结合递推式求a3,a2,a1得答案;
(3)直接利用数学归纳法证明.
解答 (1)解:当a=$\frac{1}{2}$时,${a}_{2}=2{a}_{1}(1-{a}_{1})=2×\frac{1}{2}×\frac{1}{2}=\frac{1}{2}$,
同理可得${a}_{3}=2{a}_{2}(1-{a}_{2})=2×\frac{1}{2}×\frac{1}{2}=\frac{1}{2}$,
${a}_{4}=2{a}_{3}(1-{a}_{3})=2×\frac{1}{2}×\frac{1}{2}=\frac{1}{2}$;
(2)解:若a3=a4,由a4=2a3(1-a3)=a3,得a3=0或${a}_{3}=\frac{1}{2}$.
①当a3=0时,由a3=2a2(1-a2),可得a2=0或a2=1.
若a2=0,则由a2=2a1(1-a1)=0,得a1=0或a1=1;
若a2=1,则由a2=2a1(1-a1)=1,得$2{{a}_{1}}^{2}+2{a}_{1}+1=0$,a1不存在.
②当${a}_{3}=\frac{1}{2}$时,由a3=2a2(1-a2),得${a}_{2}=\frac{1}{2}$,再由a2=2a1(1-a1),得${a}_{1}=\frac{1}{2}$.
故当a=0或1或$\frac{1}{2}$时,a3=a4.
(3)证明:∵0<a1<1,且${a}_{1}≠\frac{1}{2}$,
∴$0<{a}_{2}=2{a}_{1}(1-{a}_{1})<2×[\frac{{a}_{1}+(1-{a}_{1})}{2}]^{2}=\frac{1}{2}$.
下面证明对一切n≥2,n∈N,$0<{a}_{n}<\frac{1}{2}$.
1°n=2时已证明结论的正确性;
2°设0$<{a}_{k}<\frac{1}{2}$(k≥2,k∈N),则
${a}_{k+1}=2{a}_{k}(1-{a}_{k})=-2({{a}_{k}}^{2}-{a}_{k})$=$-2({a}_{k}-\frac{1}{2})^{2}+\frac{1}{2}$,
∵0$<{a}_{k}<\frac{1}{2}$,∴${a}_{k+1}=-2({a}_{k}-\frac{1}{2})^{2}+\frac{1}{2}∈$(0,$\frac{1}{2}$).
故对一切的n≥2,n∈N,都有$0<{a}_{n}<\frac{1}{2}$.
∴${a}_{n+1}=2{a}_{n}(1-{a}_{n})>2{a}_{n}(1-\frac{1}{2})={a}_{n}$.
点评 本题考查了数列递推式,考查了归纳法证明数列不等式,其中渗透了分类讨论的数学思想方法,是中档题.
A. | y=x-2 | B. | y=x4 | C. | y=${x^{\frac{1}{2}}}$ | D. | y=-${x^{\frac{1}{3}}}$ |
A. | (1,+∞) | B. | (0,2] | C. | (0,3] | D. | [3,+∞) |
A. | (2,$\frac{π}{3}$) | B. | (2,$\frac{2π}{3}$) | C. | (4,$\frac{π}{3}$) | D. | (4,$\frac{2π}{3}$) |
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
A. | ?x∈R,2x2-1<0 | B. | ?x∈R,2x2-1≤0 | C. | ?x0∈R,2x02-1≤0 | D. | ?x0∈R,2x02-1<0 |
A. | y=|x| | B. | y=log2x | C. | y=x | D. | y=($\frac{1}{2}$)x |