题目内容
1.若命题p:?x∈R,2x2-1>0,则¬p是( )A. | ?x∈R,2x2-1<0 | B. | ?x∈R,2x2-1≤0 | C. | ?x0∈R,2x02-1≤0 | D. | ?x0∈R,2x02-1<0 |
分析 直接利用全称命题的否定是特称命题写出结果即可.
解答 解:因为全称命题的否定是特称命题,所以,若命题p:?x∈R,2x2-1>0,则¬p是:?x0∈R,2x02-1≤0.
故选:C.
点评 本题考查命题的否定,全称命题与通常每天都否定关系,基本知识的考查.
练习册系列答案
相关题目
12.下列不等关系的推导中,正确的个数为( )
①a>b,c>d⇒ac>bd②a>b⇒$\frac{1}{a}$<$\frac{1}{b}$③a>b⇒an>bn④$\frac{1}{x}$>1⇒0<x<1.
①a>b,c>d⇒ac>bd②a>b⇒$\frac{1}{a}$<$\frac{1}{b}$③a>b⇒an>bn④$\frac{1}{x}$>1⇒0<x<1.
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
9.若集合A={x|log${\;}_{\sqrt{2}}$x<2},B={x|x-1|≤2},则(CRA)∩B=( )
A. | [-1,0]∪[2,3] | B. | (-1,0)∪(2,3) | C. | [2,3] | D. | (2,3] |
6.“-1<k<1”是“方程$\frac{{x}^{2}}{k-1}$+$\frac{{y}^{2}}{k+1}$=1表示双曲线”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
13.集合A={x|x≥1},B={x|x<m},若A∪B=R,则m的最小值是( )
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
10.若全集U={x|-2<x<1},集合A={x|0<x<1},则∁UA等于( )
A. | {x|x>-2} | B. | {x|-2<x<0} | C. | {x|0<x<1} | D. | {x|-2<x≤0} |
11.设有3个点(x1,y1),(x2,y2),(x3,y3),由最小二乘法来刻画直线y=a+bx与这3个点的接近程度时,其表达式是( )
A. | |x1-(a+bx1)|+|x2-(a+bx2)|+|x3-(a+bx3)| | B. | [x1-(a+bx1)]2+[x2-(a+bx2)]2+[x3-(a+bx3)]2 | ||
C. | |y1-(a+bx1)|+|y2-(a+bx2)|+|y3-(a+bx3)| | D. | [y1-(a+bx1)]2+[y2-(a+bx2)]2+[y3-(a+bx3)]2 |