题目内容
【题目】若动圆与圆外切,且与直线相切,则动圆圆心的轨迹方程是( )
A. B. C. D.
【答案】C
【解析】
令动圆圆心P的坐标为(x,y),C1(5,0),动圆得半径为r,则根据两圆相外切及直线与圆相切得性质可得P(x,y)到C1(5,0)与直线x=5的距离相等,由抛物线定义可求.
设圆圆的圆心C1(5,0),动圆圆心P的(x,y),半径为r,
作x=,x=3,PQ⊥直线x=5,Q为垂足,因圆P与x=3相切,故圆P到直线x=的距离PQ=r+2,又PC1=r+2,
因此P(x,y)到C1(5,0)与直线x=的距离相等,P的轨迹为抛物线,焦点为C1(5,0),准线x=,
顶点为(0,0),
开口向右,可得P=10,方程为:.
故选:C.
练习册系列答案
相关题目
【题目】4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区对市民进行“经常使用共享单车与年龄关系”的调查统计,若将单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,抽取一个容量为200的样本,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”。使用次数为5次或不足5次的称为“不常使用单车用户”,已知“经常使用单车用户”有120人,其中是“年轻人”,已知“不常使用单车用户”中有是“年轻人”.
(1)请你根据已知的数据,填写下列列联表:
年轻人 | 非年轻人 | 合计 | |
经常使用单车用户 | |||
不常使用单车用户 | |||
合计 |
(2)请根据(1)中的列联表,计算值并判断能否有的把握认为经常使用共享单车与年龄有关?
(附:
当时,有的把握说事件与有关;当时,有的把握说事件与有关;当时,认为事件与是无关的)