题目内容
【题目】在如图所示的多面体中,已知, , 是正三角形, , , 是的中点.
(1)求证: 平面;
(2)求证:平面平面;
(3)求到平面的距离.
【答案】(1)见解析;(2)见解析;(3)D到平面BCE的距离为.
【解析】【试题分析】(1)取的中点,连接,利用三角形的中位线,可证得,即四边形为平行四边形,所以,所以平面.(2)通过计算证明,而,故平面,故,也即,结合可知平面,也即平面,故平面平面.(3)连接,由(2)的结论,易知就是所求的距离.
【试题解析】
(Ⅰ)取的中点,连接,因为的中点,
所以,又AB ,
所以,四边形为平行四边形,
所以MB//AF,
因为平面, 平面,
所以平面
(Ⅱ)因为是正三角形,所以,
在中, ,
所以,故,
∴DE⊥AC,又DE⊥AD,AC∩AD=A
∴DE⊥平面ACD
∴DE⊥AF,又AF⊥CD,由(Ⅰ)得BM∥AF
∴DE⊥BM, BM⊥CD,DE∩CD=D
∴BM⊥平面CDE,BM平面BCE
∴平面BCE⊥平面CDE
(Ⅲ)连接DM,由于DE=DC
∴DM⊥CE
由(Ⅱ)知,平面BCE⊥平面CDE,
∴DM⊥平面BCE
所以DM为D到平面BCE的距离,DM=
所以D到平面BCE的距离为
【题目】某学生对某小区30位居民的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的,饮食以肉类为主).
(1)根据茎叶图,说明这30位居民中50岁以上的人的饮食习惯;
(2)根据以上数据完成如下2×2列联表;
主食蔬菜 | 主食肉类 | 总计 | |
50岁以下 | |||
50岁以上 | |||
总计 |
(3)能否有99%的把握认为居民的饮食习惯与年龄有关?
独立性检验的临界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.