题目内容
如图,DA⊥平面ABC,BC⊥AC,E、F分别为BD与CD的中点,DA=AC=BC=2.
(1)证明:EF∥平面ABC;
(2)证明:EF⊥平面DAC;
(3)求三棱锥D-AEF的体积.

(1)证明:EF∥平面ABC;
(2)证明:EF⊥平面DAC;
(3)求三棱锥D-AEF的体积.

(1)证明:连接EF,
∵E,F为中点,∴EF∥BC,
∵EF?平面ABC,BC?平面ABC,
∴EF∥平面ABC;
(2)∵DA⊥面ABC,BC?平面ABC,∴DA⊥BC,
∵BC⊥AC,AD∩AC=A,∴BC⊥平面DAC
又∵EF∥BC,∴EF⊥平面DAC;
(3)连接AE,AF,由(2)知EF⊥平面ABC,
∴EF为三棱锥E-ADF的高,EF=
BC=1,
又AD=AC,AD⊥AC,F为CD的中点,
∴AF⊥CD,AF=
,DF=
,
∴VD-AEF=VE-ADF=
×S△ADF×EF=
×
×
×
×1=
.

∵E,F为中点,∴EF∥BC,
∵EF?平面ABC,BC?平面ABC,
∴EF∥平面ABC;
(2)∵DA⊥面ABC,BC?平面ABC,∴DA⊥BC,
∵BC⊥AC,AD∩AC=A,∴BC⊥平面DAC
又∵EF∥BC,∴EF⊥平面DAC;
(3)连接AE,AF,由(2)知EF⊥平面ABC,
∴EF为三棱锥E-ADF的高,EF=
1 |
2 |
又AD=AC,AD⊥AC,F为CD的中点,
∴AF⊥CD,AF=
2 |
2 |
∴VD-AEF=VE-ADF=
1 |
3 |
1 |
3 |
1 |
2 |
2 |
2 |
1 |
3 |


练习册系列答案
相关题目