题目内容
【题目】如图,三棱台的底面是正三角形,平面平面,,.
(Ⅰ)求证:;
(Ⅱ)若和梯形的面积都等于,求三棱锥的体积.
【答案】(I)见证明;(II)
【解析】
(Ⅰ)取的中点为,连结,可证明四边形为平行四边形,得,由等腰三角形的性质得,可得,由面面垂直的性质可得平面,从而可得结果;(Ⅱ)由三棱台的底面是正三角形,且,可得,由此,.根据面积相等求得棱锥的高,利用棱锥的体积公式可得结果.
(Ⅰ)取的中点为,连结.
由是三棱台得,平面平面,∴.
∵,
∴,
∴四边形为平行四边形,∴.
∵,为的中点,
∴,∴.
∵平面平面,且交线为,平面,
∴平面,而平面,
∴.
(Ⅱ)∵三棱台的底面是正三角形,且,
∴,∴,
∴.
由(Ⅰ)知,平面.
∵正的面积等于,∴,.
∵直角梯形的面积等于,
∴,∴,
∴.
练习册系列答案
相关题目
【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额亿元 | 9 | 10 | 12 | 11 | 8 |
粮食产量万亿吨 | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出关于的线性回归直线方程;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:,)