题目内容
19.已知结合集合A={x|1≤3x<9},B={y|y=sinx,x∈R},则A∩B=( )A. | [0,1) | B. | [0,1] | C. | (0,1) | D. | [-1,2) |
分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出两集合的交集即可.
解答 解:由A中不等式变形得:30=1≤3x<9=32,即0≤x<2,
∴A=[0,2),
由B中y=sinx∈[-1,1],得到B=[-1,1],
则A∩B=[0,1],
故选:B.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
7.已知命题p:?α∈R,cos(π-α)=cosα;命题q:?x∈R,x2+1>0.则下面结论正确的是( )
A. | ¬q是真命题 | B. | p 是假命题 | C. | p∧q是假命题 | D. | p∨q是真命题 |
4.如图,在四边形ABCD中,AB=CD=1,BC=$\sqrt{3}$,且∠B=90°,∠BCD=120°,记向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,则$\overrightarrow{AD}$=( )
A. | $\frac{2\sqrt{3}}{3}\overrightarrow{a}$-(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | B. | -$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | C. | -$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1-$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | D. | $\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ |
11.如果a,b∈R,且ab<0那么下列不等式成立的是( )
A. | |a+b|>|a-b| | B. | |a+b|<|a-b| | C. | |a-b|<||a|-|b|| | D. | |a-b|<|a|+|b| |