题目内容
【题目】如图,已知二面角α-MN-β的大小为60°,菱形ABCD在平面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥平面α,垂足为O.
(1)证明:AB⊥平面ODE.
(2)求异面直线BC与OD所成角的余弦值.
【答案】(1)详见解析;(2) .
【解析】试题分析:(1)由DO⊥α,ABα,所以DO⊥AB,连接BD,可得DE⊥AB,由线面垂直的判定定理即可证得成立;(2) 因为BC∥AD,所以BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角. 由(1)知,AB⊥平面ODE,所以AB⊥OE,又DE⊥AB,∠DEO是二面角α-MN-β的平面角,从而∠DEO=60°, 不妨设AB=2,则AD=2,在Rt△DOE中求出DO的长度,作比求出余弦值,即可求出答案.
试题解析:
(1)如图,因为DO⊥α,ABα,所以DO⊥AB,连接BD,由题设知,△ABD是正三角形,又E是AB的中点,所以DE⊥AB,DO∩DE=D,故AB⊥平面ODE.
(2)因为BC∥AD,所以BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角.
由(1)知,AB⊥平面ODE,所以AB⊥OE,又DE⊥AB,于是∠DEO是二面角α-MN-β的平面角,从而∠DEO=60°.
不妨设AB=2,则AD=2,易知DE=.
在Rt△DOE中,DO=DE·sin60°=,
连接AO,在Rt△AOD中,cos∠ADO===,
故异面直线BC与OD所成角的余弦值为.
【题目】为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:
天数/天 | 151~180 | 181~210 | 211~240 | 241~270 | 271~300 | 301~330 | 331~360 | 361~390 |
灯管数/只 | 1 | 11 | 18 | 20 | 25 | 16 | 7 | 2 |
(1)试估计这种日光灯的平均使用寿命;
(2)若定期更换,可选择多长时间统一更换合适?