题目内容
4.计算:(1)${∫}_{\frac{π}{6}}^{\frac{π}{3}}$tanxdx;
(2)${∫}_{\frac{π}{4}}^{\frac{π}{3}}$$\frac{1}{sinxcosx}$dx;
(3)${∫}_{0}^{\frac{π}{4}}$tan2xdx.
分析 根据定积分的运算公式解出即可.
解答 解:(1)${∫}_{\frac{π}{6}}^{\frac{π}{3}}$tanxdx=${∫}_{\frac{π}{6}}^{\frac{π}{3}}$$\frac{sinx}{cosx}$dx=${∫}_{\frac{π}{6}}^{\frac{π}{3}}$$\frac{-dcosx}{cosx}$=-${∫}_{\frac{\sqrt{3}}{2}}^{\frac{1}{2}}$$\frac{du}{u}$=-lnu${|}_{\frac{\sqrt{3}}{2}}^{\frac{1}{2}}$=-(ln$\frac{1}{2}$-ln$\frac{\sqrt{3}}{2}$)=-(-ln2-$\frac{1}{2}$ln3+ln2)=$\frac{1}{2}$ln3;
(2)${∫}_{\frac{π}{4}}^{\frac{π}{3}}$$\frac{1}{sinxcosx}$dx=${∫}_{\frac{π}{4}}^{\frac{π}{3}}$$\frac{{sin}^{2}x{+cos}^{2}x}{sinxcosx}$dx=${∫}_{\frac{π}{4}}^{\frac{π}{3}}$($\frac{sinx}{cosx}$+$\frac{cosx}{sinx}$)dx=${∫}_{\frac{π}{4}}^{\frac{π}{3}}$$\frac{-dcosx}{cosx}$+${∫}_{\frac{π}{4}}^{\frac{π}{3}}$$\frac{dsinx}{sinx}$=-${∫}_{\frac{\sqrt{2}}{2}}^{\frac{1}{2}}$$\frac{du}{u}$+${∫}_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}}$$\frac{dv}{v}$
=-lnu${|}_{\frac{\sqrt{2}}{2}}^{\frac{1}{2}}$+lnv${|}_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}}$=-(-ln2-$\frac{1}{2}$ln2+ln2)+($\frac{1}{2}$ln3-ln2-$\frac{1}{2}$ln2+ln2)=$\frac{1}{2}$ln3;
(3)${∫}_{0}^{\frac{π}{4}}$tan2dx=${∫}_{0}^{\frac{π}{4}}$[(1+tan2x)-1]dx=${∫}_{0}^{\frac{π}{4}}$($\frac{1}{{cos}^{2}x}$-1)dx=${∫}_{0}^{\frac{π}{4}}$($\frac{sinx}{cosx}$-x)dx=($\frac{sinx}{cosx}$-x)${|}_{0}^{\frac{π}{4}}$=1-$\frac{π}{4}$.
点评 本题考察了定积分的计算,熟练掌握运算公式是解题的关键,本题是一道中档题.
A. | 0.2 | B. | 0.5 | C. | 0.9 | D. | 0.1 |