题目内容
如图,已知过点D(0,-2)作抛物线C1:
=2py(p>0)的切线l,切点A在第二象限.
(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为
的椭圆
(a>b>0)恰好经过点A,设直线l交椭圆的另一点为B,记直线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030541879618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203053938338.png)
(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054141453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054156727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030541879618.png)
解:(Ⅰ)由
设切点
,且
,由切线
的斜率为
,得
的方程为
,又点
在
上,
,即点
的纵坐标![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054468393.png)
..........4分
(Ⅱ)由(Ⅰ)得
,切线斜率
,
设
,切线方程为
,由
,得
,
所以椭圆方程为
,且过
,
……6分
由
,
, ........8分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030549673181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030549834134.png)
……….10分
将
,
代入得:
,所以
,
椭圆方程为
. ……….12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030542031286.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054219640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054234729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054250280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054281577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054250280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054312846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054328568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054250280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054421686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054453300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054468393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054702291.png)
(Ⅱ)由(Ⅰ)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054718689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054733616.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054749623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054765569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054780547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054811525.png)
所以椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054827788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054718689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054874566.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030549362119.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030549521530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030549673181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232030549834134.png)
……….10分
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203054733616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203055014547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203055045471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203055139731.png)
椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203055155838.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目