题目内容
【题目】已知函数(为常数, 是自然对数的底数),曲线在点处的切线方程是.
(1)求的值;(2)求的单调区间;
(3)设(其中为的导函数).证明:对任意,
【答案】(1);(2)单调递增区间是,单调递减区间是;(3)见解析.
【解析】
【试题分析】(1)依据题设导数的几何意义建立方程分析求解;(2)依据导数与函数的单调性之间的关系分析求解;(3)先将不等式进行等价转化,再借助导数分析推证:
(1)由得.由已知得,解得.又,即,.
(2)由(1)得,令,
当时,;当时,,又当时,;
当时,,的单调递增区间是,的单调递减区间是
(3)由已知有,于是对任意等价于,由(2)知,,易得,当时,,即单调递增;当时,,即单调递减.的最大值为,故.设则,因此,当,单调递增,,故当时,,即..对任意
【题目】京剧是我国的国粹,是“国家级非物质文化遗产”,为纪念著名京剧表演艺术家,京剧艺术大师梅兰芳先生,某电视台《我爱京剧》的一期比赛中,2位“梅派”传人和4位京剧票友(资深业余爱好者)在幕后登台演唱同一曲目《贵妃醉酒》选段,假设6位演员的演唱水平相当,由现场40位大众评委和“梅派”传人的朋友猜测哪两位是真正的“梅派”传人.
(1)此栏目编导对本期的40位大众评委的年龄和对京剧知识的了解进行调查,根据调查得到的数据如下:
京剧票友 | 一般爱好者 | 合计 | |
50岁以上 | 15 | 10 | 25 |
50岁以下 | 3 | 12 | 15 |
合计 | 18 | 22 | 40 |
试问:在犯错误的概率不超过多少的前提下,可以认为年龄的大小与对京剧知识的了解有关系?
(2)若在一轮中演唱中,每猜出一位亮相一位,且规定猜出2位“梅派”传人”或猜出5人后就终止,记本轮竞猜一共竞猜次,求随机变量的分布列与期望.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: