题目内容
【题目】已知双曲线(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )
A. B. C. D.
【答案】D
【解析】
根据渐近线与抛物线准线交点坐标,可知P的值,写出抛物线焦点坐标,可求双曲线中,再结合双曲线渐近线即可求出b,从而求出焦距.
∵双曲线的一条渐近线与抛物线的准线交于点(-2,-1),
∴=-2,即p=4,
∴抛物线焦点F(2,0),又双曲线左顶点(-a,0)到抛物线焦点距离为4,
∴a=2,又点(-2,-1)在双曲线的渐近线上,
∴渐近线方程为y=x,
∵a=2,b=1,
∴c=,
∴双曲线的焦距为2c=2,故选D.
【题目】某理财公司有两种理财产品和,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果 | 获利20% | 获利10% | 不赔不赚 | 亏损10% |
概率 | 0.2 | 0.3 | 0.2 | 0.3 |
产品(其中)
投资结果 | 获利30% | 不赔不赚 | 亏损20% |
概率 | 0.1 |
(1)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于0.7,求的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪种产品?
【题目】偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,在某次考试成绩统计中,某老师为了对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差 | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差 | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)若与之间具有线性相关关系,求关于的线性回归方程;
(2)若该次考试该数平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考数据: