题目内容
【题目】记,其中为函数的导数若对于,,则称函数为D上的凸函数.
求证:函数是定义域上的凸函数;
已知函数,为上的凸函数.
求实数a的取值范围;
求函数,的最小值.
【答案】(1)见解析;(2);见解析
【解析】
求出函数的导数,解关于导函数的不等式,求出导函数的单调区间,从而判断函数的凹凸性即可;
求出函数的导数,问题转化为在上恒成立,求出a的范围即可;令,,则,通过讨论a的范围,求出的最小值即可.
由,,
得,,
令,,则,
当时,,当时,,
故在递减,在递增,
故,
故对于,,
函数是定义域上的凸函数;
由,,
得,,
函数是上的凸函数,
故在上恒成立,
故在上恒成立,
故,故,
故实数a的范围是,
令,,
则,
,,,
当时,在上恒成立,
故F,
故H,当且仅当时取等号,
;
当时,在恒成立,
故F在递增,
故F,
故H;
当时,令,
存在零点,,
其中,,
,,
故,
结合的性质有:时,,故F,
时,,故F,
故F在上递减,在递增,
故F,
由知,,
故,从而,
故F,
又的图象是一条不间断的曲线,
故F在上有零点,
故H的最小值是0,
综上,当时,的最小值是,
当时,的最小值是0,
当时,的最小值是.
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
选考方案待确定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;
(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时,两名男生选考方案不同时,求的分布列及数学期望.
【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数(万人)与沙漠中所需环保车辆数量(辆),得到如下统计表:
参会人数(万人) | 11 | 9 | 8 | 10 | 12 |
所需环保车辆(辆) | 28 | 23 | 20 | 25 | 29 |
(1)根据统计表所给5组数据,求出关于的线性回归方程.
(2)已知租用的环保车平均每辆的费用(元)与数量(辆)的关系为
.主办方根据实际参会人数为所需要投入使用的环保车,
每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少?(注:利润主办方支付费用租用车辆的费用).
参考公式: