题目内容
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
选考方案待确定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;
(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时,两名男生选考方案不同时,求的分布列及数学期望.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】试题分析:(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为则(人);(Ⅱ)根据古典概型概率公式可得该男生和该女生的选考方案中都含有历史科目的概率为;(Ⅲ)由题意知的所有可能取值为,根据古典概型概率公式计算出两随机变量对应的概率,可得到分布列,从而根据期望公式可得的值.
试题解析:(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为
(人),
所以该学校选考方案确定的学生中选考生物的学生为人.
(Ⅱ)该男生和该女生的选考方案中都含有历史科目的概率为
.
(Ⅲ)由题意知的所有可能取值为
所以的分布列为
期望为.
【题目】下表中的数表为“森德拉姆筛”(森德拉姆,东印度学者),其特点是每行每列都成等差数列.
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
在上表中,2017出现的次数为( )
A. 18 B. 36 C. 48 D. 72