题目内容
已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.
,
解析
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为.(1)求m和a的值;(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.
已知函数f(x)=lnx-ax2+(2-a)x.(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f;(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:<0.
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2014)的值.
判断函数f(x)=ex+在区间(0,+∞)上的单调性.
已知函数f(x)=ex-e-x(x∈R且e为自然对数的底数).(1)判断函数f(x)的奇偶性与单调性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
已知函数(为常数,且).(1)当时,求函数的最小值(用表示);(2)是否存在不同的实数使得,,并且,若存在,求出实数的取值范围;若不存在,请说明理由.
设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f; (2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.
已知函数是偶函数(1)求k的值;(2)若函数的图象与直线没有交点,求b的取值范围;(3)设,若函数与的图象有且只有一个公共点,求实数的取值范围