题目内容
7.设数列{an}的首项为-1,且满足an+1=-$\frac{1}{2}$an-$\frac{3}{4}$,n≥2.(1)求{an}的通项公式;
(2)设数列bn=$\frac{({a}_{n}+\frac{1}{2})^{2}}{1-({a}_{n}+\frac{1}{2})}$,且{bn}的前n项和为Sn,求证Sn<$\frac{1}{3}$.
分析 (1)由已知条件变形得到2(${a}_{n+1}+\frac{1}{2}$)=-(${a}_{n}+\frac{1}{2}$),从而推导出{${a}_{n}+\frac{1}{2}$}是首项为-$\frac{1}{2}$,公比为-$\frac{1}{2}$的等比数列,由此能求出{an}的通项公式.
(2)由bn=$\frac{({a}_{n}+\frac{1}{2})^{2}}{1-({a}_{n}+\frac{1}{2})}$=$\frac{(-\frac{1}{2})^{2n}}{1-(-\frac{1}{2})^{n}}$=$\frac{1}{{4}^{n}-(-1)^{n}•{2}^{n}}$=$\frac{1}{{2}^{n}[{2}^{n}-(-1)^{n}]}$,利用裂项求和法和放缩法能证明Sn<$\frac{1}{3}$.
解答 (1)解:∵数列{an}的首项为-1,且满足an+1=-$\frac{1}{2}$an-$\frac{3}{4}$,n≥2,
∴2(${a}_{n+1}+\frac{1}{2}$)=-(${a}_{n}+\frac{1}{2}$),n≥2,
∵${a}_{1}+\frac{1}{2}=-\frac{1}{2}$,
∴{${a}_{n}+\frac{1}{2}$}是首项为-$\frac{1}{2}$,公比为-$\frac{1}{2}$的等比数列,
∴${a}_{n}+\frac{1}{2}=(-\frac{1}{2})^{n}$,
∴an=(-$\frac{1}{2}$)n-$\frac{1}{2}$.
(2)证明:∵bn=$\frac{({a}_{n}+\frac{1}{2})^{2}}{1-({a}_{n}+\frac{1}{2})}$=$\frac{(-\frac{1}{2})^{2n}}{1-(-\frac{1}{2})^{n}}$=$\frac{1}{{4}^{n}-(-1)^{n}•{2}^{n}}$=$\frac{1}{{2}^{n}[{2}^{n}-(-1)^{n}]}$,
∴{bn}的前n项和:
Sn=$\frac{1}{2(2+1)}$+$\frac{1}{4(4-1)}$+$\frac{1}{8(8+1)}$+$\frac{1}{16(16-1)}$+…+$\frac{1}{{2}^{n}[{2}^{n}-(-1)^{n}]}$
=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{8}-\frac{1}{9}+\frac{1}{15}-\frac{1}{16}$+…+$\frac{1}{{2}^{n}[{2}^{n}-(-1)^{n}]}$
≤$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{8}-\frac{1}{9}+\frac{1}{15}-\frac{1}{16}$+…+$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n}}$
<$\frac{1}{4}+\frac{1}{7}-\frac{1}{8}+\frac{1}{15}-\frac{1}{16}+\frac{1}{31}-\frac{1}{32}$+…+$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n}}$
<$\frac{1}{4}+\frac{1}{7}$-$\frac{1}{8}+\frac{1}{15}$-$\frac{1}{16}+\frac{1}{31}$
=$\frac{15847}{52080}$<$\frac{17360}{52080}=\frac{1}{3}$.
∴Sn<$\frac{1}{3}$.
点评 本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意裂项求和法和放缩法的合理运用.
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
A. | f(m-1)<0 | B. | f(m-1)>0 | ||
C. | f(m-1)=0 | D. | f(m-1)与0大小关系不确定 |