题目内容
2.若函数f(x)=${C}_{n}^{0}$x2n-1-${C}_{n}^{1}$x2n+${C}_{n}^{2}$x2n+1-…+${C}_{n}^{r}$(-1)r•x2n-1+r+…+${C}_{n}^{n}$(-1)n•x3n-1,其中n∈N*,则f′(1)=0.分析 先化简函数f(x)的解析式,再求出f′(x),从而求得f′(1)的值.
解答 解:f(x)=x2n-1[Cn0-Cn1x+Cn2x2-+Cnr(-1)rxr+Cnnxn]=x2n-1(1-x)n,
f′(x)=(2n-1)x2n-2(1-x)n-x2n-1•n(1-x)n-1=x2n-2(1-x)n-1[2n-1-(3n-1)x].
∴f′(1)=0,
故答案为:0.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求函数的导数,属于基础题.
练习册系列答案
相关题目
11.过原点的直线与圆x2+y2-4x+3=0相切,若切点在第四象限,则该直线方程为( )
A. | y=$-\sqrt{3}$x | B. | y=$\frac{{\sqrt{3}}}{3}$x | C. | y=$-\frac{{\sqrt{3}}}{3}$x | D. | y=$\sqrt{3}$x |