题目内容
是数列的前项和,则“数列为常数列”是“数列为等差数列”的
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
A
分析:先看如果数列{Sn}为等差数列成立能不能得出“数列{an}为常数列”成立,如果成立则为充分条件;同理看如果“数列{an}为常数列”成立能不能退出“数列{Sn}为等差数列”,如果成立则“数列{Sn}为等差数列”是“数列{an}为常数列”必要条件.
解:如果数列{Sn}为等差数列,
an+1=Sn+1-Sn=p,则p为常数,故数列{an}为常数列
∴“数列{an}为常数列”是“数列{Sn}为等差数列”的充分条件
如果a(n)是常数列,当限制n的取值范围时,s(n)就不是等差数列.
∴“数列{an}为常数列”是“数列{Sn}为等差数列”的不必要条件.
故选A
练习册系列答案
相关题目