题目内容
【题目】已知椭圆的上、下、左、右四个顶点分别为x轴正半轴上的某点满足.
(1)求椭圆的方程;
(2)设该椭圆的左、右焦点分别为,点在圆上,且在第一象限,过作圆的切线交椭圆于,求证:△的周长是定值.
【答案】(1) (2)见解析
【解析】试题分析:
(1) 设点的坐标为可知,可得椭圆方程;(2)法一:设,结合椭圆方程可得,在圆中, 是切点, ,同理可得,则易得结论;法二:设 的方程为,联立椭圆方程,由根与系数的关系式,结合弦长公式求出,再求出,则结论易得.
试题解析:
(1)设点G的坐标为,可知,
.
因此椭圆的方程是.
(2)方法1:设,则,
=,
∵,∴,
在圆中, 是切点,
∴==,
∴,
同理,∴,
因此△的周长是定值.
方法2:设的方程为,
由,得,
设,则,
∴==
=
,
∵与圆相切,∴,即,
∴,
∵,
∵,∴,
同理可得,
∴,
因此△的周长是定值.
练习册系列答案
相关题目
【题目】某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ■ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ■ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | ■ | ■ |
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.