题目内容
【题目】设满足以下两个条件的有穷数列, , , 为阶“期待数列”:
①;
②.
()分别写出一个单调递增的阶和阶“期待数列”.
()若某阶“期待数列”是等差数列,求该数列的通项公式.
()记阶“期待数列”的前项和为,试证: .
【答案】(1)三阶: , , 四阶: , , , .(2) ;(3)证明见解析.
【解析】试题分析:(Ⅰ)借助新定义利用等差数列,写出一个单调递增的3阶和4阶“期待数列”;
(Ⅱ)利用某阶“期待数列”是等差数列,通过公差为0,大于0.小于0,分别求解该数列的通项公式;
(Ⅲ)判断k=n时, ,然后证明k<n时,利用数列求和以及绝对值三角不等式证明即可.
试题解析:
()三阶: , , 四阶: , , , .
()设等差数列, , , , 公差为,
∵,
∴,
∴,即,
∴且时与①②矛盾,
时,由①②得: ,
∴,即,
由得,即,
∴,
令,
∴,
时,同理得,
即,
由得即,
∴,
∴时, .
()当时,显然成立;
当时,根据条件①得,
,
即,
,
∴,
∴.
练习册系列答案
相关题目