题目内容
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.
【答案】(1) C= (2) △ABC的周长为+
【解析】试题分析:(1)由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知可得2cosCsinC=sinC,结合范围C∈(0,π),解得cosC=,可得C的值.(2)由三角形的面积公式可求ab=3,利用余弦定理解得a+b的值,即可得解△ABC的周长.
解析:
(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC,2cosCsinC=sinC
∴cosC=,∴C=
(Ⅱ)由余弦定理得3=a2+b2﹣2ab,
∴(a+b)2﹣3ab=3,
∵S= absinC= ab=, ∴ab=16,
∴(a+b)2﹣48=3,∴a+b=,
∴△ABC的周长为+ .
练习册系列答案
相关题目
【题目】随着经济的发展,某城市的市民收入逐年增长,表1是该城市某银行连续五年的储蓄存款额(年底余额):
表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款额y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将表1的数据进行了处理,令t=x-2 010,z=y-5,得到表2:
表2
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)z关于t的线性回归方程是________;y关于x的线性回归方程是________;
(2)用所求回归方程预测到2020年年底,该银行储蓄存款额可达________千亿元.
(附:线性回归方程=x+,其中=,=-)