题目内容
19.(文)已知数列{an}的前n项和为Sn=n2+$\frac{1}{2}$n,则数列的通项公式an=$2n-\frac{1}{2}$;(理)已知数列{an}的前n项和为Sn=$\frac{1}{4}{n^2}+\frac{2}{3}$n+3,则数列的通项公式an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.
分析 利用an+1=Sn+1-Sn计算出an(n≥2),进而可得结论.
解答 解:(文)依题意,an+1=Sn+1-Sn=(n+1)2+$\frac{1}{2}$(n+1)-(n2+$\frac{1}{2}$n)=2(n+1)-$\frac{1}{2}$,
又∵a1=1+$\frac{1}{2}$=$\frac{3}{2}$满足上式,
∴an=$2n-\frac{1}{2}$;
(理)依题意,an+1=Sn+1-Sn=$\frac{1}{4}$(n+1)2+$\frac{2}{3}$(n+1)+3-($\frac{1}{4}{n^2}+\frac{2}{3}$n+3)=$\frac{6(n+1)+5}{12}$,
又∵a1=$\frac{1}{4}$+$\frac{2}{3}$+3=$\frac{47}{12}$不满足上式,
∴an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.
故答案为:$2n-\frac{1}{2}$,$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.
点评 本题考查数列的通项,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目
7.袋中有6个红球、4个白球,从袋中任取4个球,则至少有2个白球的概率是( )
A. | $\frac{23}{42}$ | B. | $\frac{1}{7}$ | C. | $\frac{17}{42}$ | D. | $\frac{5}{42}$ |
14.在等差数列{an}中,若3a2=32,3a12=118,则a4+a10=( )
A. | 45 | B. | 50 | C. | 75 | D. | 60 |
4.设集合U={1,2,3,4,5,6},A={1,3},B={2,3,4},则图中阴影部分所表示的集合是( )
A. | {4} | B. | {2,4} | C. | {4,5} | D. | {1,3,4} |
11.已知二项式${(\sqrt{x}-\frac{1}{{\root{3}{x}}})^5}$的展开式中常数项为( )
A. | -10 | B. | 6 | C. | 10 | D. | 20 |
8.已知等比数列{an}满足:a1+a2+a3+a4=$\frac{15}{8}$,a2•a3=-$\frac{9}{8}$,则$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}$=( )
A. | -2 | B. | -$\frac{5}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |