题目内容

19.(文)已知数列{an}的前n项和为Sn=n2+$\frac{1}{2}$n,则数列的通项公式an=$2n-\frac{1}{2}$;
(理)已知数列{an}的前n项和为Sn=$\frac{1}{4}{n^2}+\frac{2}{3}$n+3,则数列的通项公式an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.

分析 利用an+1=Sn+1-Sn计算出an(n≥2),进而可得结论.

解答 解:(文)依题意,an+1=Sn+1-Sn=(n+1)2+$\frac{1}{2}$(n+1)-(n2+$\frac{1}{2}$n)=2(n+1)-$\frac{1}{2}$,
又∵a1=1+$\frac{1}{2}$=$\frac{3}{2}$满足上式,
∴an=$2n-\frac{1}{2}$;
(理)依题意,an+1=Sn+1-Sn=$\frac{1}{4}$(n+1)2+$\frac{2}{3}$(n+1)+3-($\frac{1}{4}{n^2}+\frac{2}{3}$n+3)=$\frac{6(n+1)+5}{12}$,
又∵a1=$\frac{1}{4}$+$\frac{2}{3}$+3=$\frac{47}{12}$不满足上式,
∴an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.
故答案为:$2n-\frac{1}{2}$,$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.

点评 本题考查数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网