题目内容
11.已知二项式${(\sqrt{x}-\frac{1}{{\root{3}{x}}})^5}$的展开式中常数项为( )A. | -10 | B. | 6 | C. | 10 | D. | 20 |
分析 先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.
解答 解:二项式${(\sqrt{x}-\frac{1}{{\root{3}{x}}})^5}$的展开式的通项公式为Tr+1=${C}_{5}^{r}$•(-1)r•${x}^{\frac{5}{2}-\frac{5r}{6}}$,
令$\frac{5}{2}$-$\frac{5r}{6}$=0,求得r=3,可得展开式中常数项为-${C}_{5}^{3}$=-10,
故选:A.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关题目
1.函数$y=sin(-3x+\frac{π}{4})$的最小正周期是( )
A. | $\frac{2π}{3}$ | B. | $-\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $-\frac{π}{3}$ |
16.为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为1:2:8:6:3,最后一组数据的频数是6.用频率估计概率的方法,估计该校高三学生质检数学成绩在125~140分之间的概率和样本容量为( )
A. | $\frac{1}{10}$,60 | B. | $\frac{2}{5}$,15 | C. | $\frac{3}{10}$,20 | D. | $\frac{3}{20}$,40 |
1.教学大楼共有4层,每层都有东西两个楼梯,从一层到4层共有( )种走法?
A. | 32 | B. | 23 | C. | 42 | D. | 24 |