题目内容
(本小题满分15分)
如图,已知四棱锥
中,平面
平面
,平面
平面
,
为
上任意一点,
为菱形
对角线的交点.
(Ⅰ)证明:平面
平面
;
(Ⅱ)若
,三棱锥
的体积是四棱锥
的体积的
,二面角
的大小为
,求![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940844485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039408755932.png)
如图,已知四棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940517581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940532464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940532521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940563437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940532521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940595310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940610359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940641291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940532521.png)
(Ⅰ)证明:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940673510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940704408.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940719644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940735555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940517581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940782290.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940813569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940829365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940844485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039408755932.png)
解:(Ⅰ)可证:
,得平面
平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940704408.png)
(Ⅱ)设三棱锥
的高为
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039410161127.png)
∴
∴
∥![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941078343.png)
过
作
于点
,则
为二面角
的平面角,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941219626.png)
设
,则
,在
中,
,∴
,又在
中,面积法可得
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941390678.png)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941421695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940907687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940673510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940704408.png)
(Ⅱ)设三棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940735555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940985311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039410161127.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941031596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941063384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941078343.png)
过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940641291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941125550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941156294.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941172481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203940813569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941219626.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941234480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039412651046.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941281604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039412971106.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941328592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941343537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039413751036.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941390678.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203941421695.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目