题目内容
如右下图,在长方体ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分别是线段AB、BC上的点,且EB= FB=1.
(1) 求二面角C—DE—C1的余弦值;
(2) 求直线EC1与FD1所成的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046214222345.png)
(1) 求二面角C—DE—C1的余弦值;
(2) 求直线EC1与FD1所成的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046214222345.png)
解:(I)(法一)矩形ABCD中过C作CH
DE于H,连结C1H
CC1
面ABCD,CH为C1H在面ABCD上的射影
C1H
DE ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
C1HC为二面角C—DE—C1的平面角
矩形ABCD中得
EDC=
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
DCH中得CH=
,
又CC1=2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
C1HC中,
,
C1HC![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621796770.png)
二面角C—DE—C1的余弦值为
7分
(2)以D为原点,
分别为x轴,y轴,z轴的正向建立空间直角坐标系,则有A(3,0,0)、D1(0,0,2)、B(3,4,0),E(3,3,0)、F(2,4,0)、C1(0,4,2)
设EC1与FD1所成角为β,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046218741091.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621905946.png)
故EC1与FD1所成角的余弦值为
14分
(法二)(1)以D为原点,
分别为x轴,y轴,z轴的正向建立空间直角坐标系,则有A(3,0,0)、D1(0,0,2)、B(3,4,0),E(3,3,0)、F(2,4,0)、C1(0,4,2)
于是,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622030758.png)
设向量
与平面C1DE垂直,则有
,
令
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622342630.png)
又面CDE的法向量为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622358636.png)
7分
由图,二面角C—DE—C1为锐角,故二面角C—DE—C1的余弦值为
8分
(II)设EC1与FD1所成角为β,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046218741091.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621905946.png)
故EC1与FD1所成角的余弦值为
14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621453179.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621469235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621453179.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621453179.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621547259.png)
矩形ABCD中得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621547259.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621640363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621687319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621703378.png)
又CC1=2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621734435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621749634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621765462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621796770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621500195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621843459.png)
(2)以D为原点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621859660.png)
设EC1与FD1所成角为β,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046218741091.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046218901697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621905946.png)
故EC1与FD1所成角的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621952486.png)
(法二)(1)以D为原点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621859660.png)
于是,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621983704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622015743.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622030758.png)
设向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622046652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046220771651.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622093371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622311496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622342630.png)
又面CDE的法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622358636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046223731104.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204622420679.png)
由图,二面角C—DE—C1为锐角,故二面角C—DE—C1的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621843459.png)
(II)设EC1与FD1所成角为β,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046218741091.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232046218901697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621905946.png)
故EC1与FD1所成角的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204621952486.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目