题目内容
7.已知数列{an}满足,a1=a,n2Sn+1=n2(Sn+an)+an2,n∈N*,(1)若{an}为不恒为0的等差数列,求a;
(2)若a=$\frac{1}{3}$,证明:$\frac{n}{2n+1}≤{a_n}$<1.
分析 (1)通过对n2Sn+1=n2(Sn+an)+an2变形、整理可知an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,利用an=kn+b,计算即得结论;
(2)利用an+1>an、放缩可知$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$>-$\frac{1}{{n}^{2}}$,通过叠加可知$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$>-[$\frac{1}{{n}^{2}}$+$\frac{1}{(n-1)^{2}}$+…+$\frac{1}{{1}^{2}}$],利用$\frac{1}{{n}^{2}}$<$\frac{1}{n-1}$-$\frac{1}{n}$、并项相加可知an<1;利用an<1放缩可知an+1<an+$\frac{{a}_{n}}{{n}^{2}}$,进而$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$<-$\frac{1}{{n}^{2}+1}$,通过叠加可知$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$<-[$\frac{1}{(n-1)^{2}+1}$+…+$\frac{1}{{1}^{2}+1}$],利用$\frac{1}{{n}^{2}+1}$>$\frac{1}{n}$-$\frac{1}{n+1}$、并项相加可知an≥$\frac{n}{2n+1}$.
解答 (1)解:∵数列{an}为不恒为0的等差数列,
∴可设an=kn+b,
∵n2Sn+1=n2(Sn+an)+an2,
∴n2(Sn+1-Sn)=n2an+an2,
∴n2an+1=n2an+an2,
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,
∴k(n+1)+b=kn+b+$\frac{(kn+b)^{2}}{{n}^{2}}$,
整理得:kn2=k2n2+2kbn+b2,
∴$\left\{\begin{array}{l}{k={k}^{2}}\\{b=0}\end{array}\right.$,
解得:k=1、b=0或k=0、b=0(舍),
∴an=n,
∴a1=a=1;
(2)证明:下面分两部分来证明命题:
①证明:an<1.
易知an>0,an+1-an=$\frac{{{a}_{n}}^{2}}{{n}^{2}}$>0,
∴an+1>an,
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$<an+$\frac{{a}_{n}{a}_{n+1}}{{n}^{2}}$,
两端同时除以anan+1,得:$\frac{1}{{a}_{n}}$<$\frac{1}{{a}_{n+1}}$+$\frac{1}{{n}^{2}}$,
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$>-$\frac{1}{{n}^{2}}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$>-$\frac{1}{(n-1)^{2}}$,
…
$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{1}}$>-$\frac{1}{{1}^{2}}$,
叠加得:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$>-[$\frac{1}{{n}^{2}}$+$\frac{1}{(n-1)^{2}}$+…+$\frac{1}{{1}^{2}}$],
又∵$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$>-[$\frac{1}{{n}^{2}}$+$\frac{1}{(n-1)^{2}}$+…+$\frac{1}{{1}^{2}}$]>-($\frac{1}{n-1}$-$\frac{1}{n}$+$\frac{1}{n-2}$-$\frac{1}{n-1}$+…+$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{{1}^{2}}$)=-(2-$\frac{1}{n-1}$)=$\frac{1}{n-1}$-2,
又∵a1=a=$\frac{1}{3}$,
∴$\frac{1}{{a}_{n}}$-3>$\frac{1}{n-1}$-2,
∴$\frac{1}{{a}_{n}}$>$\frac{1}{n-1}$-2+3=1+$\frac{1}{n-1}$>1,
∴an<1;
②证明:an≥$\frac{n}{2n+1}$.
显然a1=$\frac{1}{3}$≥$\frac{1}{2+1}$,
∵an<1,
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$<an+$\frac{{a}_{n}}{{n}^{2}}$,
∴an>$\frac{{n}^{2}}{{n}^{2}+1}$•an+1,
∴an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$
=an+$\frac{{a}_{n}}{{n}^{2}}$•an
>an+$\frac{{a}_{n}}{{n}^{2}}$•$\frac{{n}^{2}}{{n}^{2}+1}$•an+1
=an+$\frac{1}{{n}^{2}+1}$•an•an+1,
两端同时除以anan+1,得:$\frac{1}{{a}_{n}}$>$\frac{1}{{a}_{n+1}}$+$\frac{1}{{n}^{2}+1}$,
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$<-$\frac{1}{{n}^{2}+1}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$<-$\frac{1}{(n-1)^{2}+1}$,
…
$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{1}}$<-$\frac{1}{{1}^{2}+1}$,
叠加得:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$<-[$\frac{1}{(n-1)^{2}+1}$+…+$\frac{1}{{1}^{2}+1}$],
又∵$\frac{1}{{n}^{2}+1}$>$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$<-[$\frac{1}{{n}^{2}+1}$+$\frac{1}{(n-1)^{2}+1}$+…+$\frac{1}{{1}^{2}+1}$]
<-($\frac{1}{n-1}$-$\frac{1}{n}$+…+1-$\frac{1}{2}$)
=-(1-$\frac{1}{n}$),
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{1}}$=$\frac{1}{{a}_{n}}$-3<-(1-$\frac{1}{n}$),
∴$\frac{1}{{a}_{n}}$<3-1+$\frac{1}{n}$=$\frac{2n+1}{n}$,
∴an≥$\frac{n}{2n+1}$;
综上所述:$\frac{n}{2n+1}≤{a_n}$<1.
点评 本题是一道关于数列递推关系的综合题,考查运算求解能力,利用放缩法和裂项是解决本题的关键,难度较大,注意解题方法的积累,属于难题.
A. | b2f(a)<a2f(b),b3f(a)>a3f(b) | B. | b2f(a)>a2f(b),b3f(a)<a3f(b) | ||
C. | b2f(a)>a2f(b),b3f(a)>a3f(b) | D. | b2f(a)<a2f(b),b3f(a)<a3f(b) |
A. | y=4x-5 | B. | y=-3x+2 | C. | y=-4x+4 | D. | y=3x-3 |
A. | am+bn=0 | B. | an+bm=0 | C. | am=bn | D. | ab=mn |
A. | a<b<c | B. | b<c<a | C. | a<c<b | D. | c<a<b |
A. | 21 | B. | 19 | C. | 10 | D. | 20 |