题目内容
已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为( ).
A.30° | B.60° | C.120° | D.150° |
D
因为a+b+c=0,所以c=-(a+b).所以|c|2=(a+b)2=a2+b2+2a·b=2+2cos 60°=3.所以|c|=.
又c·a=-(a+b)·a=-a2-a·b=-1-cos 60°=-,设向量c与a的夹角为θ,则cos θ===-.又0°≤θ≤180°,所以θ=150°.
又c·a=-(a+b)·a=-a2-a·b=-1-cos 60°=-,设向量c与a的夹角为θ,则cos θ===-.又0°≤θ≤180°,所以θ=150°.
练习册系列答案
相关题目