题目内容
6.如图,⊙O是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E,连结BE,若∠D=35°,则∠ABE的大小为35°.分析 利用等腰三角形的性质、圆的同弧所对的圆周角相等性质即可得出.
解答 解:∵AC=CD,∠D=35°,
∴∠CAD=35°,∠ACB=70°.
∴∠CBE=35°.
∵AB=AC,
∴∠ABC=70°,
∴∠ABE=35°.
故答案为:35°.
点评 本题考查了等腰三角形的性质、圆的同弧所对的圆周角相等性质,属于基础题.
练习册系列答案
相关题目
16.已知正项数列{an}满足(n+1)an+12-nan2+an+1an=0,且a1=1,不等式“a1•a2+a2•a3+…+an•an+1≥m对任意n∈N*恒成立,则实数m的取值范围是( )
A. | (-∞,$\frac{1}{2}$] | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,1] | D. | (-∞,1) |
17.已知棱长为$\sqrt{2}$四面体ABCD的各顶点在同一个球面上,则该球的体积为( )
A. | $\frac{1}{3}$π | B. | $\frac{2}{3}$π | C. | $\frac{\sqrt{3}}{2}$π | D. | 3π |
16.已知sinα-cosα=$\frac{1}{2}$,且α∈(0,π),则sinα+cosα=( )
A. | $\frac{{\sqrt{7}}}{2}$ | B. | $-\frac{{\sqrt{7}}}{2}$ | C. | $±\frac{{\sqrt{7}}}{2}$ | D. | $±\frac{1}{2}$ |