题目内容

1.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y,若x的最大值与最小值之和是6,则实数a的值是1.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数求得最值,再由最大值与最小值之和是6求得a的值.

解答 解:由约束条件$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$作出可行域如图,

由可行域知,目标函数z=2x+y过点A(a,a)时有最小值,最小值为3a,
过B(1,1)时有最大值,最大值为3.
∴由3a+3=6,得a=1.
故答案为:1.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网