题目内容
1.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y,若x的最大值与最小值之和是6,则实数a的值是1.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数求得最值,再由最大值与最小值之和是6求得a的值.
解答 解:由约束条件$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$作出可行域如图,
由可行域知,目标函数z=2x+y过点A(a,a)时有最小值,最小值为3a,
过B(1,1)时有最大值,最大值为3.
∴由3a+3=6,得a=1.
故答案为:1.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
12.如图,在△OAB中,P为线段AB上的一点,若$\overrightarrow{{O}{P}}$=x$\overrightarrow{{O}{A}}$+y$\overrightarrow{{O}{B}}$,且$\overrightarrow{{B}{P}}$=2$\overrightarrow{{P}{A}}$,则$\frac{x}{y}$等于( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 2 |
9.设i是虚数单位,则复数i3+$\frac{2}{1-i}$=( )
A. | 1 | B. | -1 | C. | i | D. | -i |
16.某几何体的正视图,侧视图及俯视图均如图所示,则该几何体的体积为( )
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |