题目内容
【题目】已知函数f(x)= .
(1)求f(x)+f(1﹣x)的值;
(2)若数列{an}满足an=f(0)+f( )+f(
)+…+f(
)+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan , Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.
【答案】
(1)解:∵f(x)= ,
∴ =
(2)解 ①
∴ ②
由(1),知f(x)+f(1﹣x)=1,
∴①+②,得2an=(n+1),
∴
(3)解:因为 ,
∴ ①
2Sn=221+322+423+…+n2n﹣1+(n+1)2n,②
①﹣②得,
即 ,
要使得不等式knSn>3bn恒成立,
即2kn2>3(n+1)对于一切的n∈N*恒成立,
即 对一切的n∈N*恒成立,
令 ,
因为 在n∈N*是单调递增的,
∴ 的最小值为2+
=
,
∴ ,
∴k>3
【解析】(1)由函数f(x)= ,代入化简,可得f(x)+f(1﹣x)=1,(2)根据(1)中结论,利用倒序相加法,可得
;(3)根据(2)中结论,利用错位相减法,可得Sn的表达式,进而再由孤立参数法,可得k的取值范围;
【考点精析】本题主要考查了函数的值和数列的前n项和的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】一企业从某生产线上随机抽取40件产品,测量这些产品的某项技术指标值,得到如下的频数表
频数 | 3 | 15 | 17 | 5 |
(1)估计该技术指标值的平均数(以各组区间中点值为代表);
(2)若,则该产品不合格,其余合格产品。产生一件产品,若是合格品,可盈利100元,若不是合格品则亏损20元。从该生产线生产的产品中任取2件,记
为这2件产品的总利润,求随机变量
的分布列和期望值。
【题目】苏州市一木地板厂生产A、B、C三类木地板,每类木地板均有环保型和普通两种型号,某月的产量如下表(单位:片):
类型 | 木地板A | 木地板B | 木地板C |
环保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分层抽样的方法在这个月生产的木地板中抽取50片,其中A类木地板10片.
(1)求Z的值;
(2)用随机抽样的方法从B类环保木地板抽取8片,作为一个样本,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,从中任取一个数,求该数与样本平均数之差的绝对不超过0.5的概率.