题目内容
【题目】数列{an}满足a1=1,a2=3,且an+2=|an+1|﹣an , n∈N* , 记{an}的前n项和为Sn , 则S100= .
【答案】89
【解析】解:数列{an}满足a1=1,a2=3,且an+2=|an+1|﹣an , n∈N* ,
∴a3=|a2|﹣a1=3﹣1=2,同理可得:a4=﹣1,a5=﹣1,a6=2,a7=3,a8=1,a9=﹣2,a10=1,a11=3,a12=2,….
∴S100=a1+(a2+a3+…+a10)×11
=1+8×11
=89.
所以答案是:89.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
练习册系列答案
相关题目