题目内容

点P在椭圆
x2
25
+
y2
9
=1
上,F1,F2为两个焦点,若△F1PF2为直角三角形,这样的点P共有(  )
A.4个B.5个C.6个D.8个
∵椭圆方程是
x2
25
+
y2
9
=1

∴a=5,b=3,可得c=
25-9
=4
因此椭圆的焦点F1(-4,0)和F2(4,0),
由c>b可得以F1F2为直径的圆和椭圆
x2
25
+
y2
9
=1
有4个交点,
由直径所对的圆周角为直角,可得当P与这些交点重合时,
△F1PF2为直角三角形;
当直角△F1PF2以F1F2为一条直角边时,
根据椭圆的对称性,可得存在四个满足条件的直角△F1PF2
综上所述,能使△F1PF2为直角三角形的点P共有8个
故选:D
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网