题目内容

在平面直角坐标系中,已知△ABC的两个顶点B(-3,0),C(3,0)且三边AC、BC、AB的长成等差数列,求点A的轨迹方程.
∵B(-3,0)、C(3,0),△ABC的三边AC、BC、AB的长成等差数列,
∴|AC|+|AB|=2|BC|=12>|BC|,
根据椭圆的定义,可得顶点A的轨迹是以B、C为焦点,长轴长等于12的椭圆(长轴端点除外).
∵2a=12,2c=12,
∴a=6,c=3,可得b2=a2-c2=27.
因此,顶点A的轨迹方程为
x2
36
+
y2
27
=1
(x≠±6).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网