题目内容

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0),若椭圆的离心率为
3
2
,则|k1|+|k2|的最小值为(  )
A.1B.
2
C.
3
D.2
设M(t,s),N(t,-s),t∈[0,a],s∈[0,b],A(-a,0),B(a,0),
k1=
s
t+a
,k2=-
s
t-a

|k1|+|k2|=|
s
t+a
|+|-
s
t-a
|≥2
|
s
t+a
||
s
a-t
|
=2
s2
a2-t2

当且仅当
s
t+a
=-
s
t-a
,即t=0时等号成立.
因为A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴的两个端点,M,N是椭圆上关于x轴对称的两点,M(t,s),N(t,-s),即s=b
∴|k1|+|k2|的最小值为
2b
a

∵椭圆的离心率为
3
2
,∴
c
a
=
3
2

∴a=2b
∴|k1|+|k2|的最小值为1
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网